Purity of Equivalued Affine Springer Fibers

نویسندگان

  • MARK GORESKY
  • ROBERT KOTTWITZ
  • ROBERT MACPHERSON
چکیده

The affine Springer fiber corresponding to a regular integral equivalued semisimple element admits a paving by vector bundles over Hessenberg varieties and hence its homology is “pure”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pureté Des Fibres De Springer

Purity of affine Springer fibers for GL4). — The affine Springer fiber corresponding to GL4 and regular semi-simple integral split element admits an affine paving, so its cohomology is “pure”.

متن کامل

Purity of Equivalued Affine Springer Fibers Mark Goresky, Robert Kottwitz, and Robert Macpherson

Let k be an algebraically closed field, G a connected reductive group over k, and A a maximal torus in G. We write g for the Lie algebra of G and a for X∗(A)⊗ZR. Let F = k((ǫ)) be the field of formal Laurent series over k and let o = k[[ǫ]] be the subring of formal power series. We fix an algebraic closure F̄ of F . We write G and g for G(F ) and g(F ) := g ⊗k F respectively. Let y ∈ a and write...

متن کامل

Homology of Affine Springer Fibers in the Unramified Case

Assuming a certain “purity” conjecture, we derive a formula for the (complex) cohomology groups of the affine Springer fiber corresponding to any unramified regular semisimple element. We use this calculation to present a complex analog of the fundamental lemma for function fields. We show that the “kappa” orbital integral that arises in the fundamental lemma is equal to the Lefschetz trace of ...

متن کامل

On GKM Description of the Equivariant Cohomology of Affine Flag Varieties and Affine Springer Fibers

For a projective variety endowed with a torus action, the equivariant cohomology is determined by the fixed points of codimension 1 subtori. Especially, when the fixed points of the torus are finite and fixed varieties under the action of codimension 1 subtori have dimension less than or equal to 2, equivariant cohomology can be described by discrete conditions on the pair of fixed points via G...

متن کامل

Any Flat Bundle on a Punctured Disc Has an Oper Structure

We prove that any flat G-bundle, where G is a complex connected reductive algebraic group, on the punctured disc admits the structure of an oper. This result is important in the local geometric Langlands correspondence proposed in [7]. Our proof uses certain deformations of the affine Springer fibers which could be of independent interest. As a byproduct, we construct representations of affine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006